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It is proved that two simultaneous equations of the form
x4 .. taxd =0,
byxd+ .. +b,x8 =0,
with integral coefficients, are soluble (with not all of «xy, ..., ¥, zero) in p-adic integers for every

prime p if n > 16, and are soluble in integers if n > 18. The condition n > 16 in the former result
is best possible.

1. INnTRODUCTION

In a previous paper (Davenport & Lewis 1963) we investigated the solubility of an equa-
tion of the type 0, #pay e K= 0, (1)
where a,,...,a, are rational integers, both in p-adic integers (where p is an arbitrary
prime) and in rational integers. The p-adic case appears to be a necessary preliminary
to the rational case, and any method for proving solubility in rational integers must fail
if there is a prime power modulus for which the congruence corresponding to the equa-
tion is insoluble. We proved that (1) has a non-trivial solution in every p-adic field if
n > k%, and we proved the same in the rational field (subject to the condition that the
cocfficients are not all of the same sign if £ is even), except when 7 <k < 17.

In the present paper we investigate the solubility of two simultaneous equations, each

* This paper was written while Professor Lewis was holding a Senior Visiting Fellowship at Cambridge
under a research grant made by the Science Research Council.
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98 H. DAVENPORT AND D. J. LEWIS

of the type (1), but we limit ourselves to the case k£ = 3. Thus we shall be concerned with
two simultaneous equations of the type
a X3+ ay %3+ ... Fa,x = 0,1
byxd4byxdt...+b,x3 =0,

and again we investigate solubility both in the p-adic field (for all p) and in the rational
field.

We must first recall the known results for a single equation with £ = 3.

(2)

THEOREM 1A. Any equation
a X}t a, 634 Fa, 43 =0 (3)

has a solution in p-adic integers, not all 0, if n =17, and this is not always true if n = 6.

TrEOREM 2A. Any equation (3) has a solution in rational integers, not all 0, if n > 8.

Although these are known results, we outline the proofs for the convenience of the
reader in an appendix (§11).

As regards the simultaneous equations (2), we prove first:

THEOREM 1. Any two simultaneous equations of the type (2) have a solution in p-adic integers,
not all 0, if n > 16; and this is not always true if n = 15.
To justify the last assertion, we take p = 7 and we take the equations to be

O (xy,00es 5) +TD (Y15 .05 95) + 77D (2, o005 25) = 0»1

» (4)
W1y ooy ) F Ty oo y5) +72F (245 .0y 25) = 0,
where D(xy, ..., X5) = 43+ 2x3 4 613 — 4x3, (5)
o
Wy, ey 25) = X3+ 2x3 -+ dxi - xd.

It can be verified (see § 5) that @ and W are not both divisible by 7 unless x,, ..., x; are all
divisible by 7, and this implies that the equations (4) have no non-trivial solution in the
7-adic field.

The proof of theorem 1 involves the consideration of many cases, and when p = 3 the
logical structure of the proof is complicated. The arguments used depend heavily on the
additive character of the forms, and on the fact that 3 is not a number of the form p—1.

For application in the proof of Theorem 2 we need to have (when possible) a non-
singular p-adic solution of the equations (2), that is, a solution for which

I(F, G)
3o ) T O (6)

for some i, j, where F, G denote the forms in (2). We prove:

COROLLARY TO THEOREM 1. The equations (2) have a non-singular p-adic solution provided
n =16 and provided that every form AF+4-uG (A, u not both 0) contains at least T variables with
non-zero coefficients.

The last condition is essential, since otherwise there could be a form AF+ xG which did
not vanish except when all the variables explicitly present in it vanished, and then any
solution of /'= G = 0 would be singular.
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CUBIC EQUATIONS OF ADDITIVE TYPE 99
As regards solubility in rational integers, we prove:

THEOREM 2. Any two simultaneous equations of the type (2) have a solution in rational integers,
not all 0, if n > 18.

An important consideration in the proof of theorem 2 is the number of times the same
ratio may occur among the ratios 4;/b,. We are able to dismiss the case in which some ratio
occurs at least 7 times by appealing to theorem 2A (see § 6). Thus we can suppose that no
ratio occurs more than 6 times. We use a modified form of the Hardy—Littlewood method,
on the lines of Davenport’s treatment (1939) of Waring’s problem. Here we employ a
lemma (lemma 19) on the number of solutions of two equations of a particular type in
12 variables. But the success of the proof hinges on being able to allocate the original 18
variables for different treatment, to satisfy a variety of requirements.

We need the corollary to theorem 1 to ensure that the singular series arising from the
Hardy-Littlewood treatment of the problem shall be positive (though for this application
a weaker form of theorem 1 with 18 in place of 16 would suffice).

2. THE p—ADIC NORMALIZATION OF TWO ADDITIVE FORMS

The arguments of the present section apply to two diagonal forms of any degree £. If

F::alxic—kazx’g—}—...—kanxﬁ} )
G =byxf+byxk+...+b,xk
are two such forms, we define
HF,G) = Z]g (a;b;—a;b;). (8)
Lemma 1. (i) If
F'(x),...,x,) = F(px,, ...,[)”ﬂxn),} )
G (%15 ...5%,) = G(p"'%q, ..., pP1%,),
then HEF',G") = p*e-H(F, G), (10)
where V="+...+V, (11)
i) If NGNS :/IF(xl,...,xn)—l—/l(?(xl,...,x,,),} (12)
g(xyy ey x,) = pF (%, ..., x,) +0G (x4, ..., X,),
then 3(f,2) = (Ao—p) =D H(F, G), (13)
Proof. (i) We have a; b;—a; b = p*iti)(a; b;—a; b;),
and g m+v;) =2(n—1) .
i*j

(ii) If a;, B; are the coefficients of xf in f and g respectively, then

“iﬂj—“jﬁi = (do—pp) (¢ bj‘“aj b;),
and the number of factors in the product (8) is n(zn—1). This proves lemma 1.
We shall call two pairs of forms of the type (7), with integral coeflicients, equivalent if one
pair can be obtained from the other by a combination of the operations (i) and (ii) of
lemma 1; here vy,...,v, are integers (positive, negative or zero) and A, g, o, p are rational

13-2
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100 H. DAVENPORT AND D. J. LEWIS

numbers with Ao —pup 4= 0. We note that the operations (i) and (ii) are commutative. If
the equations /"= G = 0 have a non-trivial solution in the p-adic field then so do the
equations for every equivalent pair of forms. |

From now onwards, until § 5, we shall postulate that

NEF,G) = 0. (14)

This property is plainly preserved under equivalence. From each class of equivalent pairs
of forms with integral coefficients, we select a pair of forms for which the power of p
dividing J(F, ) is minimal; this is obviously possible since the power is non-negative.
We call such a pair of forms normalized. (A similar definition has been used in several
other recent papers on p-adic equations; see for example Birch & Lewis (1965) and the
references given there.)

We observe that a normalized pair of forms is by no means unique, and indeed any
operation of type (ii) with Ao — gp not divisible by p changes a normalized pair into another
normalized pair. We call such an operation a unimodular change of basis.

To any form H with integral coeflicients there corresponds a form H* with coefficients
in the finite field of p elements, these coefficients being congruent (mod p) to the corre-
sponding coefficients of H. Variables explicitly present in /A will not necessarily be
explicitly present in /7*. By the rank of a form we shall understand the number of variables
occurring explicitly in it. ‘

LemMa 2. 4 normalized pair of forms can be written as
F=FK+pF+ -'-erk‘le—hl
G = Gyt pGy+ ...+ 151Gy,

where F;, G; are forms in m; variables, and these sets of variables are disjoint for i = 0,1, ...,k—1.
Moreover, each of the m; variables occurs in one at least of F, G, with a coefficient not divisible by p.

We have m0+m1+--'+mj—l >jn/k fbr j:—“ 1,...,k. (16)

Further, if q; denotes the minimum number of variables occurring explicitly in any form A*Fj* + p*G*
(where A*, yu* are not both 0) then

mo+...+m_+q; = (J+3)n/k for j=0,..,k-1. (17)

Note. We remark that the numbers mg,m,, ..., ¢,, ¢, ... are invariant under unimodular
change of basis.

(15)

Proof. We can certainly express a normalized pair of forms as

F:F0+pF1+3 G:G0+pGl+>

where we put in F; and G; those terms g, xf, b xf for which p7 is the highest power of p
dividing both a; and &;. Then the sets of variables occurring in F, G, in F,, G|, and so on
are obviously disjoint.

We now prove that the forms F; and G, are empty if j = £. This follows from the minimal
property of 4(F, G); for if a,x¥, b, xF were terms in F, G with g, b, both divisible by p* we
could diminish the power of p dividing #(F, G) by an operation of type (i), namely that of
putting x; = p~'x;, while preserving the integral character of the coefficients.
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CUBIC EQUATIONS OF ADDITIVE TYPE 101
It remains to prove (16) and (17). Let x,, ...,x,,, where m = m;+...+m,_,, denote the
variables in F, G, ..., F;_;,G;_;. Then the forms
F' = pIF(pxy, ooy Py Xy 15 o3 %) 5
G = pIG( PRy s PRy K1y e es K)
have integral coefficients and are equivalent to F, G. By (10) and (13) of lemma 1,
HEF',G') = p-2ine=D+260-Dm §(F, G),

By the definition of a normalized pair, we have m > jn/k, and this proves (16).
In proving (17), we can suppose without loss of generality that ¢; is the number of
variables occurring explicitly in G. Let these variables be x,,,,,...,% where ¢ = g;.

v Xpygo
Then the forms _
F’ :ﬁ JF(pxlﬁ "')lbxm+q) xm-l—q+1) "'>xn)9

G" :p—j—lG<1bxla ---ubxmﬂp Xitq+1s o+ o> xn)
have integral coefficients and are equivalent to F, G. By (10) and (13) of lemma 1,
H(F",G") = p~@i+Dnn=D+2ka-Dm+) §(F, G).

Hence m+-¢ > (j+3%) n/k, whence (17). This completes the proof of lemma 2.

3. THE casE p == 3

In the present section we suppose that F, G are additive cubic forms in 16 variables which
satisfy (14) and are normalized in the sense of the preceding section. In particular the
conclusions of lemma 2 hold. Thus by (16) and (17), with £ = 3, we have

my = 6> (18)
9o = 3. (19)

Our object is to prove (lemma 10) that the congruences /= G = 0 (modp) have a
non-singular solution, that is, a solution for which
oF oG oF JG

for some ¢, j. Since p = 3, this condition is equivalent to
(a;b;—a; b;) x;x; = 0 (mod p) (21)

for some 7, j. This will easily lead to a solution of the p-adic equations F = G = 0 (see §5).

In proving the result just stated, we are concerned only with the forms F; G; or, more
precisely, with F§ (=F*), G§ (=G*). By making a suitable unimodular change of basis
(which does not disturb the normalization) we can ensure that G§ is a form of minimal
rank among all forms A*F -+ u*G¥, where A*, u* are not both 0, and that F§ has minimal
rank among all such forms with A* 4= 0. By the definitions of the preceding sections, the
number of variables occurring explicitly in G§ is ¢,, and the number of variables occurring
explicitly in the pair F§, G¥ is m,.
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102 H. DAVENPORT AND D. J. LEWIS

. Let s denote the number of variables occurring explicitly in both F§ and G¥, let ¢ denote
the number occurring explicitly in G§ but not in £, and let r denote the number occurring
explicitly in F§ but not in G¥. We have

r4s4+t=my=6, s+t=q,=3. (22)

With an obvious notation, we can write
F¢ =aiyi+.. . +ay3+b x3+... +b.x3, (23)
G§ = X3+ e x3dy 3.+ d 2. (24)

If t were 0 we could replace F§ by F¥—b, ;'G5 which would be of lower rank, contrary

to the choice of F'§. Hence ¢ > 1. Also r-+s = rank F§ > rank G = s+¢. Hence
r=1>1. (25)

By the choice of notation, all the coefficients a, b, ¢;, d; are non-zero (in the finite field of

13 71 1) T

p elements). By multiplying F§ and G§ throughout by suitable constants, we can ensure

that o =1, d —1. (26)

We observe that the number of suffixes 7 for which §,/¢, has a particular value cannot
exceed ¢. For if it did, and the ratio §,/¢; were A, the form F§ —AG§ would contain fewer
than r-+s variables, contrary to the choice of F§. In particular, if ¢ = 1 the ratios

bifegs ...y byfeg
are all distinct.

In proving lemma 10 we can suppose that p =1 (mod3). For if p=—1 (mod3),
every residue class is a cubic residue, and therefore we can omit the exponents 3 in (23)
and (24). We can solve the resulting linear congruences with y, =0 and z, = 0, and
this solution satisfies (21). Henceforward we assume that p =1 (mod 3).

We need the following known results on cubic congruences.t
LemmA 3. The congruence
ax34-by*+cz* = d (modp)
is always soluble if abcd £ 0 (mod p).
Proof. Davenport & Lewis (1963), lemma 1, with £ = 3.

Lemma 4. The congruence ,
ax34+-by*+¢z> =0 (modp)
is always soluble with one at least of x,y,z == 0 (modp).
Proof. Lewis (1957), theorem 1.

LEmMA 5. For p =1 (mod 3), the congruence
- ax3+by? = ¢ (mod p)
is always soluble if abc 2= 0 (mod p) and p = 7; and it is soluble when p = T unless b = - a and
¢ = -1-4a.

T A referee has pointed out that the results of lemmas 3, 4 and 5 can be deduced from Gauss’s determina-
tion of the number of solutions of ax3+by® = ¢ (mod p) in his Disquisitiones Arithmeticae (art. 358).
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CUBIC EQUATIONS OF ADDITIVE TYPE 103

Progf. The assertion for p > 7 is theorem 3 (with & = 3) of Chowla, Mann & Straus
(1959)-

If ax’4-by* =¢ (mod7) is not soluble, we must have z= 0 in the congruence of
lemma 4, whence a/b = a cube, that is, b =4a (mod7). In this case ax®+by® assumes
the values 0, 4-a, --2a only and therefore ¢ = 4-4a (mod 7).

LemmA 6. If r = 3 the congruences

F¥=Gf =0 (modp) (27)
have a non-singular solution.

Proof. Since ¢q,=s-+t>=3, we can solve Gf =0 (modp), by lemma 4, with some
variable appearing explicitly in G§ different from zero. Let &,,&,,...,&,(, ..., { be such
a solution. Now we solve F'¥ = 0, which takes the form

a3t ayi+ (084 4 5,8) =0 (modp).
By lemmas 3 and 4 this congruence has a solution with some y; == 0. Since the ratio
corresponding to the y; (namely 1/0) is different from the other ratios, the values

yl’ “‘9y7’5 gl’ e gs? €19 e €t
provide a non-singular solution of F§ = G = 0 (modp).

LemMmA 7. If r =t = 2 the congruences (27) have a non-singular solution.

Proof. We have s > 2 by (22), and
F =y}tay3+b,x3+...+b, 53,
Gf = &3+ .. e a3 423+ d, 23,
Suppose first that p = 7. By lemma 5 we can then solve the congruences

yi+ayi+b,=0 (modp),
Z3+dyzi+¢; =0 (modp),

and for such a solution one at least of y,,y, == 0 and one at least of z,, z, = 0. Since the
ratios corresponding to the #’s and to the 2’s are unequal, y,,9,,1,0,...,2,,2, is a non-
singular solution.

Suppose now that p = 7. The same argument succeeds unless a,=+1 or d,=41.
Suppose that a,= +1 and d, =+1. As x} and x} assume the values 0, 41, the form
¢, X3 +¢, %3 assumes at least four distinct non-zero values modulo 7. One at least of these
is assumed by —(z{+d,z3). Hence we can solve G¥ = 0 (mod7)with one at least of
X1,% % 0 and one at least of z;,z,2 0. For these values of x,x,, let B = b, 2+ b,x3.
We can solve y}+a,y3+B =0 by lemma 5 and the fact that y,,y, may be 0 if B = 0.
Then y,,7,, %, %,,0,...,0,2, 2, is a solution of (27) which is non-singular since the ratios
corresponding to the x’s and the 2’s are different. We have a similar argument if @, = 41
and dy == +1. If ;=41 and d, =41 there is an obvious solution with the «; all 0.

LemMmA 8. If r = 2 and t = 1 the congruences (2'7) have a non-singular solution.

Progf. We have s > 3 by (22), and moreover by an earlier remark the ratios

bifeys ooy byfe,
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104 H. DAVENPORT AND D. J. LEWIS

are all different. The forms are

F§ =yi+ayy3+byxi+...+b,xd,
GF = CL a3+ e a3 25

By lemma 3 we can solve G§ = 0 with z = 1, and plainly such a solution will have some
x; == 0. If we can then solve F¥ =0 in y,,y, we shall have a non-singular solution of
F§ = G§ =0 (modp). By lemma 5 this is possible unless p =7, a,=-+1 (mod?7) and
B = b x3+byx3+byx3 = 44 (mod7) whenever G =0 (mod 7). Henceforward we sup-
pose this to be the case, and without loss of generality we may assume that the ¢, are
restricted to the values 1, 2 and 4.

Apart from permutations, there are the following possibilities for ¢;, ¢, and ¢;:

(1) 1, 1, 1; (6) 2, 2, 1;
(2) 2, 2, 2; (7) 2, 2, 4;
(3) 4, 4, 4; (8) 4, 4, 1;
(4) 1, 1, 2; (9) 4, 4, 2;
(5) 1, 1, 4; (10) 1, 2, 4.

We shall show that in each of these cases our supposition leads to inconsistent linear
congruence conditions on the 4;; hence the supposition must be false and the congruences
(27) have a non-singular solution.

Cases (1), (6), (8). The solution x;, =1, x, = —1, ¥; = 0,z = 0 of G§ = 0 gives
B=1b,—by,=-+4 (modT7).
The solution 0,0,1, —1 of G§ = 0 gives by =-+4 (mod 7). The solution 1, —1, 1, —1
gives b;—b,+ by = +4 (mod 7). These congruence conditions are inconsistent.

Cases (4), (5). The solution 1,0,0, —1 gives b, =+4 (mod 7). The solution 0,1,0, —1
gives b, = 4-4 (mod 7). The solution 1, —1,0,0 gives b;—b,= +4 (mod 7). Again these
conditions are inconsistent.

Cases (2), (3). The solution 1, —1,0,0 gives b;—b, =+ 4 (mod 7), and by symmetry
we get by—by = 44 (mod 7), and b;—b; = 44 (mod 7), which are inconsistent conditions.

Cases (7), (9). The solution 1, —1,0,0 gives b, —b, =4 (mod7). The solution
1,0,1,1 gives b;+b; =-+4 (mod7). The solution 0,1,1,1 gives b,+b; =44 (mod?7).
These conditions are inconsistent.

Case (10). The solution 1,0,0, —1 gives b, = 44 (mod 7). The solution 0,1,1,1 gives
by+by = 4-4 (mod 7). Thesolution 1,1,1,0 gives b;+b,+bg = 4 (mod 7). These condi-
tions are inconsistent.

This completes the proof of lemma 8.

LEMMA 9. If r =t = 1 the congruences (27) have a non-singular solution.

Proof. We have s >4 by (22), and again the ratios b,/cy,...,b /c, are distinct. The

forms are F =y 4-biad+.. 4+ b3,

Gf = e ad+.Fe xd425
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CUBIC EQUATIONS OF ADDITIVE TYPE 105

We choose representatives 4, B of the two classes of cubic non-residues (mod p) such

that 14 A+B=0 (modp).

This is possible, for if 4,, B, are arbitrary representatives, by lemma 4 the congruence
X34+ A4,Y3+B,Z3=0 (modp)

has a non-trivial solution and it is easily seen that such a solution has XYZ 5= 0. Thus we
can take 4 = A, Y3X3, B=B,Z*X3.

Without loss of generality we can suppose that ¢, ¢,, ¢5, ¢, are restricted to the values 1,
A and B. The possibilities for ¢, ¢y, ¢5, ¢4, apart from permutations, are:

(1 1, 1, 1, 1; (9) 4, A, A4, 1;
@) 1, 1, A4, A4 (10) A4, A4, B, 1;
(3) 1, 1, B, B; (11) B, B, 4, 1;
(4) 4, A, A, A; (12) B, B, B, 1;
(5) A4, A, B, B; (13) 1, 1, A, B;
(6) B, B, B, B; (14) 4, A4, A4, B;
(7 1, 1, 4, 1; (15) B, B, A4, B.
(8) 1, 1, B, 1; ’

-
-

b

-

Cases (1) to (6). In these ¢, =¢, and ¢; =c¢,, and hence from the distinctness of the
ratios 4;/c; we have b, == b, and by == b,. We can solve the congruence G§ = 0 (modp)
by taking %, =-—x,=¢§ (modp), x;=—x, =7 (modp), and z=0 (modp). The con-
gruence F§ =0 (modp) then becomes ’

Y1+ (b —b2) £+ (by—0b,) 7° = 0 (mod p).

By lemma 4, this congruence has a non-trivial solution and hence a solution with one at
least of £, 7 == 0 (mod p). We then have a non-singular solution of (27), the non-singularity
being satisfied by reference either to the variables x,, x, (if § == 0) or to the variables xs, x,
(if » == 0).

Cases (7) to (12). Again b, == b,. We can solve G§ = 0 (modp) by taking

X =—%xy=§ (modp), x;=0 (modp), x,=-—z={(modp).
The congruence F§ = 0 (modp) becomes
P+ (by—by) £+, =0 (modp).

As above, we can solve this with either £ or { == 0, and this gives a non-singular solution
of (27).

Cases (13), (14), (15). Again b, == b,. We solve G§ == 0 (modp) by taking x; = —x, = §,
Xy = x, = z = { (note that A4+B-+1 = 0). The congruence F§ = 0 (modp) becomes

Pt (by—by) 8+ (by+0,) F =0 (modp).

This last congruence has a solution with £ or { == 0 (if b;-+b, =0 wetake y=£=0,{ = 1),
and this gives a non-singular solution of (27).
This completes the proof of lemma 9.

14 VoL. 261. A,
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106 H. DAVENPORT AND D. J. LEWIS
Lemma 10. If F, G is a pair of normalized p-adic forms (p == 3) in n = 16 variables, then the
congruences F¥=G*=0 (modp)

have a non-singular solution.

Proof. When F, G are normalized forms in n > 16 variables, the hypotheses of lemmas 6
to 9 cover all possibilities for 7, s and ¢ Hence these lemmas imply the conclusion.

4. THE CASE p = 3

Our object in this section will be to prove (lemma 18) that a pair of forms in zn > 16
variables over the 3-adic field satisfying (14) and normalized in the sense of §2 is equi-
valent to a pair of forms F, G such that the congruences

F=G=0 (mod9)
have a solution for which  (a;0;,—a; ;) x,%; % 0 (mod 3) (28)

for some 1, j. Such a solution will be called a non-singular solution modulo 9.

An important part is played in this section by the fact that ¥* = x (mod 3). This enables

us to treat diagonal cubic forms (mod3) as linear forms (mod3). [Of course such is

not the case modulo 9.] In particular two diagonal cubic forms in three variables have a
non-trivial zero modulo 3.
We note further that if

a,/by, a,/by, as/by are distinct (mod 3) (29)

then the congruences ay X3} +a,x3-+a;x43 =0 (mod 3),l

by x3+byx3+byx3 =0 (mod3) |

have a solution with #, x,x; == 0 (mod 3). Also if
/by = ay/by % a5/by = ay/b, (mod3) (31)
then the congruences  a; 4} +a,%3+asx3+a,x3 =0 (mod 3),} (32)
byxi+byx3+byx3+b,43 =0 (mod3)

have a solution with x, x,%;x, %= 0 (mod 3). A set of three variables, say x,, x,, X5, whose
ratios satisfy (29) or a set of four variables, say x,, x,, ¥3, x,, whose ratios satisfy (31) will
be called an essential set. When we speak of a solution corresponding to an essential set we
shall mean a solution of (30) or (32) such that none of the variables is = 0 (mod 8). Such
solutions necessarily satisfy (28) for some x;, x; in the set.

Our first sequence of lemmas 11 to 15, does not assume that ¥, G are normalized. We

simply consider any forms F = Fy+3F, +32F,
where £}, G; are diagonal cubic forms in m; variables in which each term x? occurs in at
least one of I/, G; with a coefficient not divisible by 3, and the sets of Varlables for:=0,1,2
are disjoint. We do not now assume that Xm, > 16.

As before, we define ¢;, for ¢ = 0, 1, 2, to be the minimal number of variables appearing
in any form in the pencil A*F ¥+ u*G}¥, where A*, 4* are not both 0. Note that

m; = q;+1 if ¢,>0.

(33)
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CUBIC EQUATIONS OF ADDITIVE TYPE 107

The variables appearing in F, G; fall into blocks according to the ratio of their coeffi-
cients modulo 3. If the number of variables with ratio 7* is 4 then the rank of F¥ —»*G¥*
is m;—h. Hence m;—h > ¢;, that is, h<m—g,.
In particular, if ¢; > 1 then the variables in F,, G; fall into two or more non-empty blocks
of equal ratios. Also, if ¢; > 2 then either there are three or more non-empty blocks of
equal ratios or there are two blocks, each containing at least two variables. Thus ¢, > 2
implies the existence of an essential set among the variables in F, G,.

Lemma 11. If F, G is a pair of forms such that either

q=2 and g

¢l

or

)

= 1.
1 = 2 and 92 = 1:)
or g2 = =1,

then the pair F, G is equivalent to a pair which has a non-singular zero modulo 9.

2 and q,

)

Proof. First suppose that ¢, > 2 and ¢; > 1. As noted above there is an essential set
of variables among those appearing explicitly in F;, G,. Let a be a solution corresponding
to this set. Put Fy(a) = 3a, Gy(a) = 3f. The congruences

Fy(a)+3F,(W) = 3(a+F,(w)) =0 (mod9),
Gy(a) +3G, (W) = 3(f+G,(W)) =0 (mod9)

are equivalent to two linear (possibly non-homogeneous) congruences (mod 3), which
are obviously soluble since, as remarked above, ¢; > 1 implies at least two distinct ratios
among the variables occurring in Fj, G,. This solution is non-singular (mod 9) since a
comes from an essential set.

Now suppose that ¢; > 2 and ¢, > 1. We multiply each of the variables in F,, G, by 3
and divide both forms by 3. The resulting forms are equivalent to F, G and have

9022, QI>I;

whence they have a non-singular zero modulo 9. Similarly, if ¢, >2 and ¢,>1 we
multiply each of the variables in F, G,, F,, G, by 3 and divide both forms by 9 to obtain
a pair of equivalent forms for which ¢, > 2 and ¢, > 1.

Lemma 12. If Go=4 and m; =1
then the forms F, G have a non-singular zero modulo 9.

Proof. We note that if F, G’ have a non-singular zero modulo 9 so does any pair obtained
from F, G by a unimodular change of basis. After making a unimodular change of basis
we can suppose that G§ is a form of minimal rank among the forms A*F§ 4 u*G§F (where
¥, u* are not both 0) and that /¥ is a form of minimal rank among those with A1* = 0.
With an obvious notation, we can write

F¥=ayp3+...4+a,y3+b x34+... +b,43, 1
G¥ = X+ e x34d 2B+ ... +d, 2]
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108 H. DAVENPORT AND D. J. LEWIS

Here our hypothesis implies that S+t=4. (35)
Also, asin § 3, our conventions imply that

r>t>=1, (36)

and at most ¢ of the 4,/c; have the same value. Since the ratios 4;/c; are == 0 or co they are
= -1 (mod 3), whence ¢ = 1 would give s < 2, contrary to (35). Thus we have ¢ > 2.
We now show that there are at least two disjoint essential sets among the variables in
F,, G,.
Case 1. Suppose t = 4. Then r > 4 and clearly there are two disjoint sets of type (31),
namely y,, ¥,, 21, Z, and ys, Yy, Z3, Z4-

Case 2. Suppose t = 3. Then r > 3 and s > 1. In this case y,,y,,2,,2, and y;, x;,z; are
two disjoint essential sets.

Case 3. Suppose t = 2. Then r>2 and s> 2. In this case x,y,,z, and x,,7,,2, are
disjoint essential sets.

We multiply the solution corresponding to one of the essential sets by 77 and the
solution corresponding to the other essential set by 7;. Then

Fyt-3F, = 3(a; T340, T3+ Lwd)  (mod9),
1

Gort 3Gy = 30 T4, T3 muf) - (mod9),

where a4, £, %y, f, are 3-adic integers and w, ..., w,, are the variables in F,, G,. By hypo-
thesis m; > 1. To find a non-singular zero modulo 9, it suffices to solve

ay T340, T3+ w} =0 (mod 3),}
fr Ti+Py Ti+mwi =0 (mod3),

with at least one of 77,7, == 0 (mod 3). Since there are three variables the congruences

(37) have a non-trivial solution. Since m; > 1, at least one of A,,x, = 0 (mod 3) and

consequently this solution cannot have 7} =7, = 0 (mod 3). Thus the solution includes
a non-zero multiple of a solution corresponding to an essential set, and so is non-singular.

(37)

Lemma 18. If Go=6 and my>=9
then the forms I, G have a non-singular zero modulo 9.

Proof. The proof is on the same general lines as for the preceding two lemmas, except
that we do not use /|, G;; indeed they may be empty. This time we show that there
are at least three disjoint essential sets among the variables in [, G,. On multiplying the
solution corresponding to the first essential set by 7}, the second by 75, etc., we obtain

Fo=38( T3+a, T3+a;T3) =0 (mod9),
Go=3(h Ti+F Ti+p; T3 =0 (mod9).

These congruences necessarily have a solution with one of the 7; #= 0 (mod 3), and hence
the resulting solution is a non-singular zero of F, G (modulo 9).
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CUBIC EQUATIONS OF ADDITIVE TYPE 109

We now show how to choose the three disjoint essential sets. Once again, after a uni-
modular change of basis, we can assume that Fj, G, are as in (34), that (36) holds, that
r4s4+t>=9, s+t>86, - (38)

and that any ratio 4,/c; occurs at most ¢ times. Since the §;/c; are necessarily congruent to

41 (mod 3), we have s < 2.

Since s> 6 the possibility ¢ = 1 is excluded, and if { = 2 we must have s =4 and
r > 3.

Case 1. Suppose that t > 6. Then r > 6 and there are three essential sets of type (31).

Case 2. Suppose that t = 5. Then r > 5 and s> 1. We take the three sets to be:

Y15Y25 215295 Y35Y 45235245 Y55 X1 250

Case 3. Suppose that t = 4. Then r >4 and s > 2. We take the three sets to be:

Y15 Y25 215295 Y3y X15 235 Y4y X9y Z4e

Case 4. Suppose that t = 3. Then r > 3, s > 3. We take the three sets to be

%, Yz, (1=1,2,3).

Case 5. Suppose that t = 2. Then r > 3 and s =4 as noted earlier. We can suppose that
bsfes = byfcy (mod 3). We take the three sets to be: xy,y,, 2,3 Xy, Yo, 255 X3, X4, Y5
This completes the proof of lemma 13.

Lemma 14, If Go=4 and my>=T+q,

then the forms F, G have a non-singular zero modulo 9.

Proof. By lemma 12 we can suppose that m; = 0. By lemma 13 we can suppose that
g, =4 or 5.

Once again, followlng a ummodular change of basis, we can suppose that G¥ has
minimal rank among the forms A*F§ 4 u*G§, where A*, y* are not both 0, and that F¥
has minimal rank among those forms for which 4* <= 0. We can write F;, G, (mod 9) as

Fy=ayi+...+a,y3+b, 53+ +b,x34+3(fiz8+... +-1,2}) (modg),} (39)
Go=3(yi+...+ey))foxi+. . +oxd4-d zi4...+d,28  (mod9),
where none of g, b;,¢;,d; = 0 (mod 3). We know that

79 Viy g
S+t=4o0r5 and 7 > T7. (40)

Also we recall that not more than ¢ of the ratios §,/¢; can have the same particular value
(mod 3). As in lemma 12 this implies that ¢ > 2. We have 4, = 4-1 (mod 3), and we can

suppose that ;=1 (mod3),

1

on replacing y; by —y; where necessary. Thus ¢;= 1 or 4 or 7 (mod 9), and since r > 7
there must be three of them that are mutually congruent, say

a5 =ag=a; (mod9).
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110 H. DAVENPORT AND D. J. LEWIS

We first form two disjoint essential sets from yy, ..., %4 %, ..., %,, 21, ..., 2, This can be
done as in lemma 12, since s > 4. We multiply a solution corresponding to one essential
set by 7; and a solution corresponding to the other essential set by 7. Finally, we put

Ys=Ys=1Yy; =Y.
Then Fy=3(t; T3+, T3+Y3) =0 (mod?9),
Go=3(4 Ti+/, T3+yY?) =0 (mod9),
the unit coeflicient of Y in the first congruence coming from the fact that
as+ag+a;, =3 (mod?9).

These congruences have a solution with one at least of 7}, 7,, Y == 0 (mod 3). Obviously
no such solution has 77 =7, = 0 (mod 3). It follows that this solution is a non-singular
zero modulo 9 for the pair F, G.

Lemma 15. If
F=ayi+. . +ayi+b a3+ ... +b, %+ 3( fwi+...+f,w)) (mod9),
G=3(e,y3+...+e,y3) +o a3+ ... e, 63+ 3wi+3(gywi+...+g,wd) (mod9),
where none of a;,¢; = 0 (mod 3) and if
r>=5  q¢g=2
then F, G have a non-singular zero modulo 9.
Proof. As before, we can assume that
;=1 (mod3) for i1=1,..,r,

so that the g; are restricted to the values 1, 4 and 7 (mod 9). Consequently, there are either
three equal g; or three distinct a; (mod 9), and in either case the sum of these three g, is
= 3 (mod 9). We take them to be a3, a,, a;.

We can form an essential set from the variables y,, ¥, ¥, ¥, and we multiply a solution
corresponding to this essential set by 7. We also put y; =y, = y; = ¥ and put

Wy =...=w, = 0.
Then | F=3aT5+Y3) =0 (mod9),
G=3(fT3+yY>+w}) =0 (mod?9).

These congruences have a solution with one at least of 77, Y, w; == 0 (mod 3). For such a
solution 7 = 0 (mod 3) since otherwise Y = w, =0 (mod3). Thus F,G have a non-
singular zero (mod 9).
For the remainder of this section we suppose that F, G is a normalized pair of forms in
n > 16 variables. By lemma 2 and the hypothesis that n > 16, we have
mg =6, my+my =11, my+m +my = 16, (41)

Go=3, my+q, =8, mytm+q, =14 (42)
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CUBIC EQUATIONS OF ADDITIVE TYPE 111

LemMmA 16. If F, G are normalized forms in n > 16 variables and q, > 4 then they are equivalent
to a pair of forms which have a non-singular zero modulo 9.
Proof. By lemma 11 the conclusion holds unless ¢, = 0 and ¢, < 1. By (42) we then have

my=8, my+m =>13.

By lemma 12 the conclusion holds unless m, = 0, in which case m, > 13. Now by lemma 13
the conclusion holds unless ¢, = 4 or 5. But in that event, we have m, > 8+¢,, and by
lemma 14 the conclusion holds.

Lemma 17. If F, G are normalized forms in n > 16 variables, and q, = 3, then they are equi-
valent to a pair of forms which have a non-singular zero modulo 9.

Proof. We can suppose that G§ has minimal rank among all forms AFF§+ufGE, where
A¥, ut are not both 0. We can also suppose that either F'¥ or G has minimal rank among
all forms AFF¥ ++ufG¥, where A}, yff are not both 0. For in the contrary case there will be a
form AFFF+pfGF of minimal rank, where Af4f 4= 0. Then we replace F by F+4u, A7'G;
this does not disturb the minimal property of G, and the new F{ is of minimal rank
among all forms that are linear combinations of F§, G¥.

By lemma 11 the conclusion of the present lemma holds unless ¢, = 0 and ¢, = 0 or 1.
By (42) this implies that me =8, my-+my > 13. (43)
There are exactly 3 (=¢,) variables occurring explicitly in G§, say «,, x5, x;. There are
r =my—3 > 5 variables occurring explicitly in F§ and not in G§, say y,, ..., y,. Thus we
can write Fy=a yi+...+a,y}4+g ¥+ gy 43+ g5 43,

Gy =3(eryi+ ...+, 4}) +oy iy a3+ g3,
where all ¢; and all ¢; are == 0 (mod 3). We can suppose without loss of generality that
;=1 (mod3), ¢=1 (mod3). (44)
Since ¢, = 0 and one of the forms F§, G§ is of minimal rank among all forms
M FY+pf GY,

we have either F§ or Gf identically zero. Suppose first that F§ is identically 0 and G} is not.
Then we have the situation of lemma 15 in which there is a variable (w, in the hypothesis
of that lemma) which occurs explicitly in G§ but not in F'¥. Since r > 5 and ¢, = 3, the
hypotheses of lemma 15 are satisfied and the conclusion of the present lemma follows.

We can now suppose that G¥ is identically 0. In this case we prove that ¢, ..., ¢, cannot
all be mutually congruent (mod3). If ¢ =e¢ (mod3) for ¢=1,...,7, then (G—3eF)*
contains only the three variables x,, x,, x5, and the coeflicients of the y} in G— 3eF are all
divisible by 9. Also (G, —3¢F,)* is identically 0. Let ', G’, be the forms F, G— 3¢F after
putting x; = 3x/ (1=1,2,3). All the coefficients of G’ are divisible by 9, whence, by

lemma 1, we have H(F',3-2G") — 3180-D-2a-DY(F, G).,

But n > 16 and hence #(F’,372G") < #(F,G), contrary to the hypothesis that F, G is a
normalized pair. Hence the ¢ are not mutually congruent (mod 3).
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112 H. DAVENPORT AND D. J. LEWIS
Suppose that F¥ and Gf both vanish, so that m; = 0. Then 7 > 10 by (43), since

r = my—q, > 13—3. Since there are three possible values for the ¢; (mod 3), there is one
set of at least four of the ¢ which are mutually congruent, say e, ¢,, €5, ¢,. Put @, = 1+ 3q,.
One at least of 14 +a,+ag, 14+a+ayg+ay, 4o +oagtoy, 140,405-+a, must be
% 0 (mod 3), since their sum is = 1 (mod 3). We may suppose that
I+ +a,4a;3=A==0 (modS3).
Taking y, =y, = y; = X, we get
@y} +ay3+agyd = 3(1 4oy +ay+ay) X3
= 34X® (mod9),
3(eyit+ey3t+esy3) =9 X°=0 (mod9).
Since the ¢ are not all mutually congruent (mod 3) we can suppose that ¢; == ¢, (mod 3).
Putting y, = —y, = Y, we get
@ Yi+asy3 = 3(a—az) Y2 (mod9),
3(esyit+esys) = 3EY? (mod 9),
where £ == 0 (mod 3). From the variables yq, y,, x;, £,, 3 we can form an essential set, and
we multiply a corresponding solution by 7. Then

F=34X+ (ty—a;) Y3+aT%) =0 (mod9),
G =3(EY? +p7T3) =0 (mod9),
where AE = 0 (mod 3). These congruences have a solution with not all of
X,Y, T=0 (mod3),
and hence one with 7 = 0 (mod 3). As usual this implies the existence of a non-singular
solution of F = G = 0 (mod9). :
Finally, we suppose that Gf is identically 0 and F§ = Zhw} is not identically 0, say
h, == 0 (mod 3). We can suppose that ¢; == ¢, (mod 3). On putting y;, = —y, = X, we get
a, y3+a,y3 = 3(a;—a,) X3 = 3BX® (mod?9),
(e y3+eyy3) = 3(6;—e,) X3 = 3EX3 (mod 9),
where E == 0 (mod 3). From the variables y,,y,, %, X,,¥3 we form an essential set and
multiply a corresponding solution by 7'. Put all but the first variable in F'{ equal to 0. Then
F=3BX*+aT?+hw}) =0 (mod9),
G = 3(EX3+4T3) =0 (mod9),
where Eh; =0 (mod3). These congruences have a solution with 7= 0 (mod 3), and

hence F = G = 0 (mod 9) has a non-singular solution.
This completes the proof of lemma 17.

Lemva 18. If F, G is a pair of normalized forms in n > 16 variables then F,G are equivalent
to a pair of forms which have a non-singular zero modulo 9.

Progf. Lemmas 16 and 17 and formulae (41) and (42).
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CUBIC EQUATIONS OF ADDITIVE TYPE 113

5. PROOF OF THEOREM 1 AND ITS COROLLARY
Proof of Theorem 1. Let F, G be diagonal cubic forms with rational integral coefficients
in x;,%,, ..., %,, where n > 16. Theorem 1 asserts that there is a non-trivial p-adic integral

eey Npy

solution of the equations F = G = 0, and this is equivalent to the assertion that the
congruences F=G=0 (modp) (45)

have, for every positive integer », a solution in which not all of %, x,,...,%, are divisible

by p.
~ In proving this assertion we can suppose without loss of generality that 4(F,G) = 0.
For if $(F, G) = 0 we replace F, G by

F' = F4pt (e x34-... +¢,x3),
G = G+pri(dx3+...4d,x3),
where ¢, ...,¢,, d,, ..., d, areintegers chosen (as they obviously can be) so that #(F',G’) = 0.
The congruences (45) are equivalent to the congruences
FF=G =0 (modp),
and the solubility of the latter (with x,, ..., x, not all divisible by p) implies that of the former.
Case 1. Suppose that p == 3. By lemma 10 the congruences
F=G=0 (modp) (46)
have a solution for which

oF oG JF 0G

for some 7,5. We apply a well known method (sometimes called Newton approximation)
which establishes, by induction on g, the solubility of

F=G=0 (modp*) (48)

subject to (47). The inductive hypothesis is satisfied for g = 1. Suppose it is satisfied for a
particular # > 1, and let X be a solution of (48) subject to (47). Putting y = x4 p+t, we

obtain n OF
Fy) =FX)+p* 3 5.4 (modprth),

G(¥) = Gx)+4* 3 524 (modper).
Thus we shall have F(y)= G(y) =0 (modp#*!) provided ¢,,...,¢, satisfy the linear

congruences

pE®+3 =0 (modp),
i=1 0%

n oG
PG (X) +i§1 %ti =0 (modp).

These are soluble since the linear forms in #,, ..., #, are non-proportional (modp), by (47).
Further, since y = X (mod p#), 4 > 1, the condition (47) remains valid when x is replaced
by y. This proves the result.

15 VoL. 261. A.


http://rsta.royalsocietypublishing.org/

A A

|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

S A

J

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

114 H. DAVENPORT AND D. J. LEWIS

Case 2. Suppose that p = 3. As we observed in § 2 it suffices to prove the p-adic solubility
for an equivalent pair of forms. By lemma 18 there is an equivalent pair F, G such that

the congruences F=G=0 (mod9)

are soluble with 9-1 (9F oG OF G

b "a_x‘) =0 (mod3),

that is % %;(a;b;—a;b;) =0 (mod 3), (49)
for some ¢, j. It suffices to prove (for x> 2) the solubility of
| F=G=0 (mod 3
subject to (49). The proof is again by induction on g, but now we put y = X+ 3#71t. We
obtain F(y) = F(x)+30Za;x2, (mod 36+1),
G(y) = G(x)+3#Zb;x%t;,  (mod 3#*1),

Again the linear forms are non-proportional (mod 3) by (49), and the conclusion follows.
It remains only to prove the last assertion of theorem 1, which follows from the insolu-
bility of the equations (4) in the 7-adic field. It suffices to prove that the congruences

D = ¥} -+ 23+ 653 — 4} =0 (mod?7),
Y= x3-+-2x3-+4x3 -+ =0 (mod7),
have no solution except the trivial one.
Put ® — 2434 613 — 4.
The only non-trivial solutions of ¥ = 0 (mod7) are given by
4 (8, ..o 43) = (1,0,0,—1), (1,—1,0,1), (0,1,1,1), (1,1,1,0), (1,1,—1,1).
The values of ® for the sets of values on the right are
0O=2 —4, 2, 4, =2
respectively. Since 42 and 44 are cubic non-residues (mod 7), none of the sets gives
a solution of P=x3+0=0 (mod?).
This proves the result.

Remark. Although we have stated theorem 1 only for forms with rational integral
coeflicients, the same result for forms with p-adic coeflicients follows at once from theorem 1.

Proof of the corollary to theorem 1. Let

3 3
F: alx1+...+anxn,}

(50)
G="bx}+...+b,x5.

The variables fall into blocks, with variables in the same block if the ratios of their coeffi-
cients a;/b; are the same. Since n > 16, by theorem 1 the equations (50) have a non-trivial
p-adic integral solution, say &, ...,&, with & = 0. If this solution were non-singular we
should have the desired result. If it is singular and §; & 0 then x; and «; belong to the same
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block. Let x,, ..., x, be the variables in the block containing %,. Then all the non-zero §;
must have 1 <7 <r. We can pass to an equivalent pair of equations of the shape
X e xdda, X+ e, =0,
oy i1+ dy 5} = 0,
where none of the ¢; or d; is 0, and where ¢, £} +... 4, £ = 0. By hypothesis the second

equation contains at least 7 variables explicitly. Hence, by theorem 1A, we can find
Brits -5 By mot all 0, such that

dpr Bt +d, 7= 0.
If Qi1 Pyt Fa, =0
then §,,...,&,,5,415...,f, 18 a non-singular solution of the equations (50).
We can now suppose that
Ad=a, fl+...+a,fr + 0,

and we consider &4y 68+ ... 4,4 Aud = 0.
This is equivalent to 3¢, 82y 43¢, & Y%+ Y3+ Aud = 0, (51)
where ¢;,§;, and 4 are all = 0. Take u == 0 and divisible by a high power of p. Then (51)
has a solution for y of the form

y=(—A/3¢c, £ ud+Agub+Agud+..., (52)
where the series is convergent in the p-adic sense if u is divisible by a sufficiently high
power of p. Under this same condition we have

&+y =+ 0.

Now &, +¥,8s ..., uf, 115 ..., uff, is a non-singular solution of (50), since £, +y = 0 and
fiu == 0 for some ¢ > 7.

6. PRELIMINARIES TO THE PROOF OF THEOREM 2

In theorem 2 we can suppose that z = 18, since if » > 18 we can equate to zero the last
n— 18 variables.

As explained in § 1, we first dispose of the case in which there are 7 or more of the ratios
4;/b; in the equations (2) that are equal. Without loss of generality (by taking a linear
combination of the equations) we can suppose that the equations are

b8x3+...+b18x%g= O. (54)

(Some of the coefficients here may be zero.) By theorem 2A the equation (54) has a
solution in integers &g, ..., &4, not all 0. It now suffices to solve the equation

in integers xy,...,%;, %, not all 0, and again this is possible by theorem 2A. Thus the
assertion is justified, and from now onwards we shall assume that no ratio occurs more than 6
times among the a,/b,. In particular, therefore, at least 3 distinct ratios occur.

15-2
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116 H. DAVENPORT AND D. J. LEWIS
The general plan of the proof will be to divide the 18 variables in (2) into 10 and 8,
say Xy, ..., 49 and x, ..., ¥, in a manner to be explained in § 8. Since the ratios
/by .5 @y0/b1o
are not all equal, there exists a real solution of the linear equations
@y X1 a0 X0 = O,}
byt +b10X10 =0,

with no y; zero. Without loss of generality (by changing «; into —x;, if necessary) we can
suppose that y; > 0 (i=1,...,10). We choose positive constants «;, x, to satisfy

(55)

K < XF < K. (56)

For each i =1, ...,10 we define an exponential sum

Liy)= 2  e(yx), (57)

KiP < x < kjP

where y is a real variable and P is large; and we also define a shorter exponential sum

U= 2 ), (58)

Pé<x<opt

Let #°(P) denote the number of solutions of the equations (2) in integers x,,...,%,
subject to KP<x<ikP (i=1,..,10), (59)
Pt < x < 2Pt (i=11,...,18). (60)

Our aim will be to prove that 4"(P) - oo as P - o0, and this will prove theorem 2.
Let a, o’ be real variables, and let
¥, =aqo+ba (i=1,...,18). (61)

We can express .4/ (P) as a double integral, namely

# (B = [ [ 1. Tiorio) UG- Ulg) dadr, (62)

and this is the starting point of the proof.
We define the major arcs (though the name is something of a misnomer, since they are
squares) to consist of those «, " which admit simultaneous rational approximations B/R,
B’|R with
/ o

o — =

R
where (B,B',R) =1 and 1< R<P'" (64)

1
< RPZ+é>

1

| B

Here ¢ is a sufficiently small number, independent of P. These major arcs are non-
overlapping, for if B,/R, + B,/R, we have

|Bi/R,—By/Ry| = 1/R, R, > (1/R,+1[Ry) P~279.

We denote an individual major arc by I (B, B’, R), and the totality of the major arcs by
IN. We define the minor arcs m to consist of the rest of the square 0 <a <1, 0 <o’ < 1.
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CUBIC EQUATIONS OF ADDITIVE TYPE 117

As usual in applications of the Hardy-Littlewood method, the principal difficulty lies
in estimating the contribution made by the minor arcs to the integral in (62). This will
be the subject of the next two sections. The general idea will be to deduce the estimate
from

max [T300) - 7500l [ [ 1T3007) . U] ded (65)

(a,a’)em

but the choice of the 6 factors to be taken outside will need careful consideration.

We shall prove (lemma 26) that it is possible to divide the 18 ratios 4,/; (among which
no one ratio occurs more than 6 times) into 3 sets of 6 such that, in each set of 6, no one
ratio occurs more than twice. One such set of 6 will give rise to 7;(y,), ..., Z5(¥s), and the
other two (some of which will be allotted to exponential sums 7" and some to exponential
sums U) will give rise to 75(y;), ..., U(yys) in (65).

The treatment of the double integral in (65) will be based on the lemmas of the next
section. The estimation of the factors taken outside in (65) will be based on Weyl’s in-
equality and the estimates of Davenport (1939), but of course it will be necessary to corre-
late, as far as possible, the Diophantine character of the various linear combinations
Y15 +-+» Vg Of @ and &’. This will be the theme of § 8.

7. TWO EQUATIONS IN 12 VARIABLES

The object of the present section is to prove the following
LemMmA 19. Suppose that of the 6 ratios

ay/bs, 48/[?83 anfbi,  @afbras  aysfbyss  ayafbys, (66)
etther (1) a;[b,, aglbg, a,5/b,5 are distinct and ay,/byy = a;/b;, ay5/bys = ag/by,

or (ii) a;/b;, aglbg, ayy[byy, a15/bys, ays/by5 are distinct.

Thent f; f; 173(y7) Te(ve) U(y1r) Uy1z) Uyis) Ulyre) |2 dada’ < P5te (67)

Jor large P and any fixed ¢ > 0.

We can suppose without loss of generality that a,5/b,5 = ay4/by,, for by Cauchy’s
inequality the integral does not exceed the geometric mean of two integrals, one with
7,5 in place of y,, and one with y,, in place of y,,.

In either case, the integral in (67) represents the number of solutions of the simultaneous

equations 3
9 g X34 ag X3+ ay 83+ @y ¥y + a3 435+ ay 43,

— 3 3 3 3 3 3
= A Y7+ agYg+ Ay Y11 + 012 Y12+ C13Yis+ A1aYis

(68)
by %3+ byx3+ by, a3y 012635+ 13435+ b1y 43,
=b7y§+bsyg+buy?1+blzy%z“i‘blsy?s‘Fbmy?@
where the variables are integers subject to
kP <x,y;<kiP (1=1,8),
Y ( ) 1 (69)

Pt < x,y, < 2Pt (1=11,12,13,14).)

T We use Vinogradov’s notation < to indicate an inequality with an unspecified constant factor.
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118 H. DAVENPORT AND D. J. LEWIS

In case (i) we can form linear combinations of the two equations to eliminate x;, (and
therefore also x;,) or to eliminate x; (and therefore also x,,). Replacing x, by x and x; by
X, and recalling that a,4/b,5 = a,,/b,4, and relettering the coefficients and the remaining
variables, we obtain two equations of the form

3 3 3 3
ax’+ay X} +as a3+ ayx§ = ay’+a, yi+agy3+agyi, 1

70

bX34-byx3+kagx3+kayx3 = bY3+bzy§+/ca3y§+ka4y2,J (70)

subject to kP <x,y <k7P, kP <X, Y <kyP,) -
PY <, y; < 2PE. J i

As a consequence of the hypothesis of case (i), none of the new coefficients is 0. We shall
investigate the number of solutions of (70), (71) in lemmas 20 to 22.

In case (i) we can again form linear combinations of the two equations (68) to eliminate
¥, Or xg, but now none of the other variables disappears. With a similar change of notation,

we obtain two equations of the form
axd+ay ¥} +-ay ¥3+ag w3+ ay v = ay’ +ay yi+ay Y3+ asyi+agyi, } (72)
bX34by a3 by a3 +-kagx§+kayxd = 0¥+ by yi+ by yd+ kagyd+kay yi,
again subject to (71). In consequence of the hypotheses of case (ii), none of the new
coeflicients is 0, and the ratios afby, by asfkas

are distinct. We shall investigate the number of solutions of (72), (71) in lemmas 23 to 25.

In connexion with the estimate (67), we note that the number of solutions of either (70)
or (72) with corresponding variables equal, that is, the number of possibilities for x, X,
X1, %o, %5, %, in (71), is proportional to P?+4® — P%",

LemMA 20. The number of solutions of (70) subject to (71), with x =y and X = Y is < P%¥+¢
Jor any fixed ¢ > 0.
Proof. The number of possibilities for #, y, X, Yis € P2 The remaining variables satisfy
ay 63+ az 6§+ ayxf = a,yi+-asyd+a,yi,
by %3 +kayx3+kayxi = b, y3+kasy3+ka,y.
These are equivalent to kay %3 — by x3 = ka, y}—byy3,
as 83+ ayyi—asy—asyi = ayyi—a; 43,
The first equation has < P¥2+9 solutions in x, %y, ¥, Y5, and when these variables have
particular values, the second equation has < (P#)2*¢ solutions in xs, %y, ¥3, 4. [The number
of divisors of a positive integer m is < m¢.] Hence the number of solutions of (70) with
x =1y, X =Yis < P?*3C%), asstated.
LemMa 21. The number of solutions of (70) subject to (71), withx =y and X == Y is < P

Proof. The number of possibilities for x, y is < P. The remaining variables satisfy the

equations ay ¥} -asx3+ayxd = ay3+asyi+a, i, (73)

bX34byx3+kayx3+kayx3 = bY3+ by y3 +kagy3+ka, x3. (74)


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

CUBIC EQUATIONS OF ADDITIVE TYPE 119
The last equation can be replaced by
X3+ byx3—ka 53 = bY3+byy3—ka, y3. (75)
We put ¥ = X+ 7 and rewrite (75) and (73) as
bAH(X?) +by(y3—23) = kay(yi—+1), (76)
a3(*—y3) +ay(xi—yi) = ar(yi—21), (77)

where Ap(X?) = (X+T)3—X3. Since T 4 0 and
Ar(X?) > 32| | > P T,
and all other terms in (76) have absolute value < P, it follows that
0<|T| < Ps.

If x, = y, then the number of possibilities for x,, y, is ¢ P*¥, and the number of possibilities
for xy, ys, X4, y4 in (77) is (P¥)2*¢, and the number of possibilities for x,, y, is < P?. Then
T, X are determined by (76) with < P¢ solutions. Thus the number of solutions of (70) of
the kind under consideration in this lemma, with x; = y,, is

< P1Ht+1Cro+y < Pote,
If x, & y, and x; = y,, the values of x,, ¥, determine those of x,, 7, with < P¢ possibilities
17 Y1 3=1Y3 1Y 0 Y4 p >

and the values of x,, y, determine those of X, 7" with < P¢ possibilities. Thus the number
of solutions of this type is « Pl+6+e) < Poe,

We can now limit ourselves to solutions with x, &y, and x; % y5. Let S(T, xy,y;, %4, y4)
denote the number of solutions of (76) and (77) with prescribed values of the variables
indicated. Then the total number § of solutions is given by

$ = Z S<T:x1>ylax4>y4)'
T, %1, Y1, %4 Y4
By Cauchy’sinequality
SZ < { z 1}{ Z SZ(T: xlaylz’ x43 .1/4)} << {P%+4(%)}{Sl}? (78)
T, x1, Y15 %4 Y4 T, X1 Y15 X4 Y4
say.
 Here $; can be interpreted as the number of solutions, in all the variables, of the four
equations BAL(X3)+ by(y3—3) = ka, (33 —23), (79)
bAL(X"3) 4 by(ys* —x5%) = kay(y3—7), (80)
ag(¥—y3) +a,(xi—y3) = a; (g3 —#}), (81)
a3(x5® —y5) +a(xi—v3) = a,(y7—%). (82)

Consider first solutions of this system with X = X’. By subtracting (79), (80) we get
the equation ' ,
b Y3—x3 =y’ —x%’,
which has < P#@+9 solutions. There are also < P!*% possibilities for 77and X (=X’). Then
xy, ¥y are determined with < Pe¢ possibilities, since x; & y;. Turning now to (81), (82) we
see that x,, y, determine x,, y3, 3, y5 with < P¢ possibilities, since x; % y; and x} == y;.
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120 H. DAVENPORT AND D. J. LEWIS
Thus the number of solutions of (79) to (82) with X = X" is
< Pi@te+1+E+E+e < Pt

Consider now solutions of (79) to (82) with X == X'. Here the values of x,, y,, x5, ¥5
determine those of X, X', 7" with < P¢ possibilities, since they determine the value of

Ap(X73) —Ap(X%) = 3T(X' —X) (X' + X+ T),

and none of the three factors is 0. Then x,, , are determined by (79) with < P¢ possibilities,
since x; = y,, and finally the values of x,, y, determine those of x5, y5, &3, y5 with < P¢
possibilities from (81), (82), since x3 % y; and xj == y3. Thus the number of solutions of
the type under consideration is < (P%)87e.

We now have S, < Pi+e,
Substitution in (78) gives S§2 g Pttt
whence S < Pite,

Hence the number of solutions of (70) and (71) with x =y, X == ¥ is

< P5+€+PS< PEte,
This proves lemma 21.

Lemma 22. The number of solutions of (70), subject to (71), with x == y and X & ¥ is < P%**e,
Proof. We put y = x+t, ¥ =X+ T and rewrite (70) as
al,(x3) +a, 3+ asy3+agyi = ay x4 as 43+ a,x3, (83)
bAL(XY) -+ by g+ kay Y-+ kag i = by -+ kay wi-+ ka, . (84)
As in the proof of the preceding lemma, we have
0<|f| <P 0<|T|<Pi

Let S denote the number of solutions of (83), (84) in all the variables.

Let R(a, ) denote the number of representations of «, # by the right hand sides of (83),
(84) and let S(¢, T, «, f) denote the number of representations of «, # by the left hand sides
when ¢, T have particular values. Then

S= 3 R@p)SGT,ep)

t,Tyo 8

Hence s2<i 3 RopH X ﬂSz(t, T,0,0)} < {P%EﬂRz(“:ﬂ)}{Sl}’ (85)

L, Tyo, B
say.
We first estimate XR?(a, ). This is the number of solutions of
al x?—}—aS xg+a4x2 = al xi3—[—d3 x§3—{—a4xf13,

by x3+4-kay 23+ kay x5 = by xi3 +kag k3 + kay 23

These imply that kay x3— by x3 = kay x> — by x5°.
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This equation has < (P¥)2*¢ solutions, and when the variables in this equation have
given values, the equation

3 3 '3 3 __ 1343
ayx3+a,xi— a3 x5 —ay 2 = ay (x> —3)
4 . .
has < (P%)%*¢ solutions in x5, x,, x5, x;. Hence

S R0, B) < P,
o, f

Thus (85) becomes §2 < {P+e}{S)}. _ (86)
Here §; denotes the number of solutions of the system

ab () +ayit+ayyi+ayi =« (87)

al, (%) +a, ¥ +agys + o,y = a, (88)

DAL (X3) +byy3+kasy3+kayyi = f, (89)

bAL(X) +byy5* +kagys® +kayyd = f (90)

in ail the variables.

(1) Consider first solutions of (87) to (90) with x = x" and X = X'. Here we have
Q'+ a3y ays = o yitasyitayi, (91)
byyy*+kasys’ +kayysd = byy3+kasy3+ka,yi. (92)

If a;yP+a,y? = asy3+a,y}, then y? =y} and y;® = y3. The number of possibilities
for all the variables in (91), (92) is < P*®*¢. In addition the number of possibilities for
x, X, ¢, Tis < P2*2®, This gives < P%*¢ solutions of (87) to (90).

If a3y +a,y =+ asy3+a,y3, then the values of y3, y4, y;, y, in (91) and (92) determine
Y1, y; with < P¢ possibilities and similarly y, y,. This again gives < P*®*¢ gsolutions of
(91), (92), with the same conclusion as before.

(IT) Consider next solutions of (87) to (90) with x = x" and X 4 X'. (This covers also the
possibility x == 5" and X = X".) We choose y,, s, 14, y5, y3, 43 arbitrarily. This determines
T, X, X’ with < P¢ possibilities, on subtracting (89), (90). Further, on subtracting (87),
(88) we have y,, y; determined with < P¢ possibilities. Finally, there are < P'*% possibilities
for ¢,x,x’. Thus we get < P%*¢ solutions for (87) to (90).

(ITI) Consider finally solutions of (87) to (90) with x =4 x" and X = X'. We choose all the
eight variables y,, ¥5,¥s, Y4, Y1, Y5, Y3,y arbitrarily, and then ¢,x,%', 7, X, X’ are deter-
mined with < Pe¢ possibilities. This gives < P%*¢ solutions for (87) to (90).

We can now say that §; <€ P%*¢ and (86) gives

$2 < P4+ePﬂ$+e,

whence S <€ Pite,
This proves lemma 22.

Lemma 23. The number of solutions of (72), subject to (71), with x =y and X = Y is <€ P%*+e,
Proof. There are < P? possibilities for x,y, X, ¥, and the remaining variables satisfy

alx?+a2x§+a3x§+a4xi = aly?+42y3+d3y§+d4yi, (93)

by x3+by 53+ kagx3+kay % = by yi+ by y3+kas yi+kayyi, (94)

16 VoL. 261. A,
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122 H. DAVENPORT AND D. J. LEWIS
where the ratios a,/b,, a,/b,, 1/k are distinct. The second equation can be replaced by
(kay—by) xi+ (Ray—by) 45 = (ka,—b,) y}+- (ka—b,) 3. (95)

This has < (P%)%*¢ solutions in x,,¥,, %,, ¥5, and when these are fixed, the equation (93)
has < (P%)2*¢ solutions in g, s, %4, y,. Thus we obtain

< P2+id+e) < Pitte
solutions of (72).

LemMma 24. The number of solutions of (72) subject to (71), with x =y and X 4 Y, is < P%**¢,
Proof. There are < P choices for x, y. We have
@ x4y a3+ ay i3+ ey xf = @ i+ 4 y3 4 as yi+ay v (96)

The number of solutions of this equation, subject to (71), is
1
f |U(a, &) Ulaya) Ulaga) Ulayo) |2 de.
0
By repeated use of Cauchy’s inequality this can be majorized by

| U () p de
0

By the result of Hua (1938), this is < (P%)5*¢, Then X, Y are determined with < P¢
possibilities. Thus there are <€ P**¢ solutions of (96) and therefore < P5*¢ solutions of (72)
of the type under consideration.

LemmMa 25. The number of solutions of (72), subject to (71), with x 4=y and X + Y is < P%'*e,

Proof. We proceed as in the proof of lemma 22, though now all four of the variables x,
and all four of the variables y; occur in the equations analogous to (83), (84).
In the present case, XR?(a,f) represents the number of solutions of

ay 83+ ay 3+ ag A3+ ag xf = ay X+ ay x5+ ag 2+ ay x5,
by X3+ by X3+ kagx3+kayx3 = by 3+ by 533+ kay x53 +kay x.
By eliminating x,, x,, 43, ;, we get an equation with < (P¥)2+¢ solutions in x,, x,, ¥}, x5,
and then one of the above equations leaves < (P%)2*¢ possibilities for s, x,, x5, #3. Hence
ZRa,f) < P%e

as before, and so (86) remains valid.
Now &) denotes the number of solutions of the system

al(x%) +a, yi+ay Y3+ asyi+a, 93 = o, (97)
aly(x"%) +a yP +ayy? +agyd - a,y P = a, (98)
bAL(X?) +by y}+ by y3+kas y3+kayyd = f, (99)
bAL(X7) +byyP+ b,y +kasy P +kayy? = p. (100)

(I) Consider first solutions with x = x" and X = X'. By the same argument as in the estima-
tion of XR%*(a,f) above, applied to the equations obtained by subtracting (97), (98) and
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(99), (100), there are < P**¢ possibilities for yy, Yy, Y3, Y Y1, Ys Y4, ys- There are also
< P2+2® possibilities for x,4’, X, X', t, T. This gives a contribution to S that is < Pb*e,

(I1) Consider next solutions with x = x’ and X < X’. The equation obtained by subtracting
(97), (98) has < (P¥)5*¢ solutions in ¥y, ..., Y4 ¥}s ..., Y4 by the same application of Hua’s
theorem as above. Then (99), (100) give < P¢ possibilities for 7', X, X'. There are also
< P'*% possibilities for #,x. Thus we get a contribution to S, that is < P% e,

(I1I1) Consider finally solutions with x 4 x" and X 4= X'. As in the proof of lemma 22, the
number of such solutions is < P% e,
Thus we can take §; < P**¢ in (86), and this gives § < P%*¢ as before.

Proof of lemma 19. This follows, by virtue of the preliminary remarks, from lemmas 20
to 22 in case (i) and from lemmas 23 to 25 in case (ii).

8. ALLOCATION OF VARIABLES AND TREATMENT OF THE MINOR ARCS

In this section we estimate the contribution made by the minor arcs m to the integral
(62) for #°(P). As explained in § 6, this estimation is based on the expression (65); but we
have first to decide upon a permutation of the 18 variables before allotting them in order
to the ranges (59) and (60), and so to the corresponding exponential sums (57), (58).

Lemma 26. The 18 suffixes can be divided into three sets in suc/z a way that within each set the
same ratio a;[b; occurs at most twice.

Proof. Let the sets of suffices giving equal ratios comprise [;,/,, ..., [, suffixes, where
6=2L=lb>...20>1, L+h+...+1,=18.

We describe the sets of suffices for convenience as blocks, and call /; the length of the ith
block.

We form a set of six suffixes by taking two from the first block (provided /, > 2) and
two from the second block (provided /, > 2) and so on, making the total up to six by using
blocks of length 1 as necessary. This is plainly possible, and in this set of six suffixes the
same ratio ¢;/b; can occur at most twice.

There remain twelve suffices. We divide these again into blocks of suffixes with the
same value of ¢;/b,. If [1,1;, ..., 1, are the lengths of the blocks, then

a=zlizl>..=20>1, h+h+.. .+, =12

The fact that [] < 4 follows from the fact that at most three of the original blocks can have
length > 5, and every such block has lost two elements.

We distinguish two possibilities. If 4 =4 and [} =1, = [; = [, = 3, we take two from
the first block, two from the second block, one from the third block and one from the
fourth block, to constitute the second set of six. The remainder form the third set of six.
Each of these sets has the desired property that, for the suffixes in the set, the same ratio
a;/b; occurs at most twice.

In any other case, there are at most three blocks satisfying /; > 8. We repeat the original
operation, taking two suffixes from the longest block, and so on. This produces a second
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124 H. DAVENPORT AND D. J. LEWIS

set with the desired property, and for the six remaining suffices the length of each block is
< 2, so that this set also has the desired property.
This proves the result.

LemMA 27. By a suitable permutation of the eighteen suffixes we can ensure that

(1) no ratio occurs more than twice among a,/by, ..., ag/bg;

(ii) the suffixes 7, 8, 11, 12, 13, 14 satisfy the requirements of lemma 19;

(iii) the suffixes 9,10,15,16,17,18 also satisfy (mutatis mutandis) the requirements of lemma 19.

Proof. We take one of the three sets of suffixes constructed in lemma 26 as 1, ..., 6. Thus
(1) 1s satisfied.
Each of the other sets of six has ratios g;/6; which fall into one or other of the following
four types: A, A, B, B, C, C;
A, A, B, B, C, D;
4, 4, B, ¢, D, E;
4, B, C, D, E, F;
where it is understood that different letters denote different ratios. We renumber the
corresponding suffixes as 711 8. 12, 13, 14
in the first two cases, and as 13, 14, 11, 12, 7, 8

in the last two cases. Then the set of suffixes 7, 8,11,12,183, 14 satisfies (i) of lemma 19 in
the first two cases and (ii) of lemma 19 in the last two cases.

Similarly, we renumber the suffixes of the third set as 9,10,15,16,17,18, and this set
again satisfies (i) or (ii) of lemma 19 with 9, 10 in place of 7, 8 and 15 to 18 in place of
11 to 14.

Lemwma 28, After the permutation of lemma 27 we have

1 p1
fo .fo |75 (y7) .- Tho(710) Uy11) ... U(y1g) | dada” < P¥e, (101)

Proof. Since the suffices 7, 8, 11, 12, 13, 14 satisfy the requirements of lemma 19, it
follows from that lemma that

f(l) f(l) IT7(77) 7;(78) Ulrn) U(?’lz) U(7’13) Uly,y) lzd@i do’ < P% e,

1 pl1
Similarly [ [ 1730) Tio(r10) Ultss) Ulrse) Ulra) Ulpsg) P dad’ < P,

Now (101) follows by Cauchy’s inequality.

LemmMa 29. Suppose that, for some ¢ with 1 < 1 < 6,
| (r)| = P, (102)
where 0 < $—24. (103)
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Then y; has a rational approximation A|Q satisfying
y| 1
Vi — 0 < QP o

Proof. By Dirichlet’s theorem on Diophantine approximation, there exists a rational
approximation 4/@ to y; such that

1<Q <P, (104)

1<Q <P,

A4 1
Write f = y,—A/Q.
If @ > P9 we appeal to lemma 138 of Davenport (1939), which is essentially Weyl’s
inequality. (It related to a sum extended over P < x << 2P instead of over «; P < x < k[P,
but that is of no significance.) This gives

| T:(r)| < P12,

which is contrary to (102) and (103). Hence @ < P!-9,
We now appeal to lemma 9 of Davenport (1939), which asserts that

|Z:(%)| < @ *min (P, P~2|4]1).
Comparing this with (102) we obtain
P < QP PO < QP2 A,

and these lead to the conclusions (104).

Lemma 30. Suppose that (a,«’) s in m. Let i, j be two of the suffixes 1, ..., 6 for which

a;b;—a;b; & 0. (105)
Then either |T;(,)| < P2, (106)
or |T;(y;)] < PE+22, (107)
or \T:(%) T;(7;)| < PE*2. (108)

Proof. Suppose that (106) and (107) are false. Then, if
)| = Pro, [Ty(y,)] = P,

both 0; and §; satisfy the condition (103) of lemma 29. By that lemma there exist rational
approximations 4;/Q; and 4;/Q); to 7; and y; respectively such that

. 4
1< Q< P, <Q’5P3 0;°
) A, 1
1 < Q] << PS@J} 7] - QJ Q%Pg g]
By (61) (aibj'—aj b)a= bj?’i"“bﬂja

with a similar equation for o’. Hence a, «’ have simultaneous approximations B/R, B’/R
with (B, B, R) = 1 and
) R|(a;b;—a;4;) Q; Q.

Hence | R < P3oi30;, | (109)
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126 H. DAVENPORT AND D. J. LEWIS
Also I“—B/RI < I?’i“Ai/Qil‘i’l?’j‘“Aj/le
< Ql—%{P—'3+0l+ Q]f%P—3+0j
< R1(QQ, P=++14.Q,Qf P+10)
< R-1P-3+30;+30;, (110)
The same estimate holds for |o'— B'/R).
If 3(6;+0;) <1—20 then (109) and (110) imply that (¢,«’) is on the major arc

I (B, B'; R) defined by (63), (64). This contradicts the hypothesis that («,a’) is in m.

H
e 00, > §(1—26),

whence |T;(v,) T;(y,)| = P2~0% < P¥+9,
This proves (108).

LemMma 31. For (a,a") in mi we have

6
T1T50)] < P (1)

Proof. Of the six suffixes, let ¢ be one for which [Z(y;)| is maximal. If
| Ti(r)| = Pt~
then we can suppose that § < &, for otherwise
[T ()| < [T < P
=

Since at most one of the five suffixes j other than ¢ can satisfy ;/b; = a;/b;, we must
have at least four suffixes j for which 4;/b; = a;/b;. By lemma 30, for each such j we have

either )] < ple,
or T3] < Pi+-0-0,
6
Hence 1L |To(y,)| < Pri-0+s9+83
k=1
where ¢ = max (2, 340).
If § < 4 we have 2(1—-0)+4p =2(1—-0)+3 < 5,

and if £ <0 <% we have

2(1—0)+4¢ =2(1—0) +4(3+0)
=L2420 < 5.
Thus (111) is established.

LemMA 32. The contribution of all (a,a’) in m to the integral (62) for N (P) is < P%+93,

Proof. The result follows from lemmas 28 and 31, in view of the estimate (65).
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9. TREATMENT OF THE MAJOR ARCS
In this section we investigate the contribution made by the major arcs IM(B,B’; R),
defined by (63), (64), to the integral (62) for #°(P). We shall obtain a main term, which
will be ultimately shown to be > P%, and various error terms which are o(P%).
We shall first prove (lemma 37) that the contribution made by all the major arcs with
R > P% can be absorbed in the error term.

Lemma 33. If (a,a') is in (B, B'; R) then

|T;(%)| < Ry¥min (P, P~%|4] 1) | (112)
. , R
ﬂrl: 1,...,10, where RZ‘:'-Rl(B,B) = W’ (113)
fi = ala—BJR) + b, —B'|R) = a,f+4,f" (114)
Proof. By (61), (63), (113), (114) we have
y=aatha =GR+ f, GJR=%CHLE
so that (C, R;) = 1. Also R, <R P!
by (113), (64); and 18] < la—BIR| + |/~ B[R]

< R-1\P-27% < (R)~1P-29,

by (114), (63), (113). The result now follows from lemma 9 of Davenport (1939) ; the fact
that our present inequality for f; contains an unspecified constant is of no significance.

LemMA 34. If (a, ') is in (B, B'; R) then

|U)| < R7*PH? (i=11,...,18). (115)
Proof. Suppose first that R; > P¥1-9, Then by lemma 14 of Davenport (1939) [where
T; is our U], we have )| < PHE,

Since R; < R < P'-?, this implies (115).
Suppose next that R; < P¥1-9, By lemma 10 of Davenport (1939) we have

|U(y;)| < Rr¥PE.
This again implies (115).

LemMA 35. We have

S (RuRig) ™ Ry Ryg) < Ro2ve, (116)
3 (R Ry) < R (117)

where in each case the summation s over
1<B<R, 1<B <R, (B,B,R)=1.

Proof. We collect together the blocks of equal ratios among ¢,/b; (i=1,...,18); each
block contains at most 6, so there are at least 3 blocks. If 4,/b, = a;[b; then R,R; lies
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128 H. DAVENPORT AND D. J. LEWIS

between two positive constants, by (1138). Thus if 7, ..., 1, is a representative set of suffixes,
one from each block, then ‘

(Ry...Ryg) ™8 (Ryy...Ryg) ™% < Ri%...R; O, (118)
where § <0, <2 (j=1,...,») and
Oyt +0,=3248 =5 L. (119)
Let u; = (R,a;, B+, B') for j=1,...,v, so that ;| R and
R, =Rfu; (120)

by (118). We have a, /b, + a;,[b;, if j =+ k. If & = (4;,u;) then
a; B+, B'=0 (modd),
@, B+b, B =0 (modd),
whence (a;.b;,—a;, b)) B=0 (modd),

i ik ik Vij

and similary for B’. Since (B,B’,R) =1, and J|R, it follows that
dlay; by —a;, b;..

zzk

Thus (dj, u,) divides a fixed non-zero number for all j, £ with j = £. It follows that

Uy Uy...u,| KR, (121)
where K is fixed and non-zero.
We now estimate the number of pairs B, B’ in the sum (116) for which uy, ..., s, have

particular values. We have
a;, B+b, B =u;x; (j=1,...,v), (122)
and any two of these equations in B, B’ have their left hand sides linearly independent.

Since v > 3, we can regard ¥, ..., %, as functions of x;, x,, and we note that x,, x, deter-
mine B, B’ uniquely (since #y, ..., , are fixed for the moment). Plainly

R R
!xll < ;;’ EARS Zl;:

since 1< B<R, 1<B <R.
The first two of the equations (122), together with the jth equation (j > 3) imply a

linear relation of the form @ @ 0
7ty Xy €3 "ty Xy 4=Vt %5 = 0,

N .
where & = a,b,—a, by, o =a,b—a, b, @=a,b,—a,b,,

so that none of ¢{?, ¢, ¢ is 0. This gives a congruence to the modulus %; which must be
satisfied by x,, x5, namely

¢uy 2y +cfuy %, =0 (modu; =3, ...,V).
1 %1163 Ug Ko J

The moduli u,...,u, of these congruences have only bounded common factors when
taken in pairs, and have only bounded common factors with u,, u,. Hence, for given x,, the
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CUBIC EQUATIONS OF ADDITIVE TYPE 129

value of ¥, is.determined mod ,...u, with only a bounded number of possibilities. Recalling
that w uyus...u, < R by (121), we deduce that the number of possibilities for x,, for
given x,, is

< 1

uz ua..tuv

Hence the number of possibilities for x;, x,, and so for B, B’, is
132
Uylly... U,

By (118) and (120) the sum in (116) is

<

R2
< Riu)=% .. (Rfu)~%
ub%uy( [uy) (R[u,) )
(121)
< R2-—01—...~0., z ulzl—lugz-l ...Uf"“l.

ULy eees Uy
(121)

By (119) and the fact that 0, < 2, this is

L R3 3 wu,...u,
Uy, s
(121

< R-2+dte,

This proves (116). The proof of (117) is similar, the only difference being that (119) is
replaced by 0.1 10 =6
1 vee y .

Lemma 36. If B, ..., 1, are defined by (114 ) then

[ Trmin(p,P-2ig)= dpap < o, (123)
D7) i=1
where 7 = 0 and D(7) denotes the region in the (§,f") plane defined by
max (|f], |§]) > P-5+. (124)
Proof. We have, by (114), B =a,f+bp, (125)
where f=a—B|R, f' =do—B'R.

It will suffice to consider the part of D(7) for which |f| > |§’|, and then the range of
integration for § when £ is given is < |f].
If a,/b; = a;/b;, the equations (125) imply, on solving two of them, that

18] < 6]+ 15;]- (126)
We know that not more than four of the ratios
ay/by; ..., ayofbig (127)

can be equal, for by lemma 27 not more than two of the first six are equal and
a;/bg = aglby,  A2lbg = a19[byq.

17 _ Vor. 261. A.
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130 H. DAVENPORT AND D. J. LEWIS
We divide the ratios (127) into blocks of equal ones, of lengths (say) /,, ..., [,, where
d=lizlb=...=20>1, [+..+1[ =10

If 4, j are suffixes from different blocks, (126) tells us that either |£;| > |f] or |£,] > |f].
Hence || > |p| for all ¢ except possibly those in one particular block, and therefore

10
TImin (P, P=2|f|=1) < Ph(P=2|f|-1)k+-th,
i=1 ‘

It follows that the integral in (123) is

< J*oo Ph(P~2ﬁ»l)lz+...+l,,p’dﬂ
p-3+r

< Pl1—2(lz+...+l,,)<P3—'r)lz+...+l,,—-2

< Pll+...+lv—6—1(lz+...+l,,—2)
< P4—4‘r)
since ly+...+1, =101, > 6.

Remark. If 7 = 0 the estimate (123) remains valid when the integral is extended over
the whole plane, since the contribution of the square |f| < P53, || < P73 is plainly < P*.

It will be convenient to have on record, for use later, the analogous estimate to that just
mentioned, when the product is modified by omitting any one factor. There are then still
at least three blocks of suffixes, and the only change in the argument is that /;+... 4+, =9
instead of 10. The result is that

ff ioH’min(P,P‘Z[/)’i[—l)dﬂd/;”<P3, (128)

where II’ denotes a product over any 9 of ¢ =1, ..., 10.

LemMma 37. The contribution of all major arcs (B, B', R) with R > P% {o the integral (62) is
< PP,

Proof. By lemmas 33 and 34 the contribution is

10
< 33 [ (R R Ry Ry PO T min (P,P]f] ) df g
R>pP% BB M(B, B, R) i=1

By the remark following lemma 36 this is
< 3 3 (R...R)F(R, ... Ry)F PRI P,
R>P% BB

By lemma 35 this is

< P8 R-2+{+e < P +88-96G%-¢) < pP-te

R >2P98
This proves lemma 37.

We now turn to the contribution of the major arcs with R < P, which provides the
main term in the asymptotic formula for 4"(P).
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The first step is to contract the major arcs (B, B’,R) to IMM,(B,B’,R), which are
defined by replacing R='P~27% in (63) by P~3*7. Thusin the present notation Ik,(B, B, R)

is defined by Bl < P37, |f| <P3r. (129)

Here 7 is a small positive constant to be chosen later.

Lemva 38. The contribution of the major arcs (B, B’, R) differs from that of the contracted
major arcs WM, (B,B',R) by < P%¥~*%,

Proof. By lemma 33 and the second estimate for U(y;) used in the proof of lemma 34,
the difference between the two contributions, for a particular set B, B, R, is

s 10 . ’
<Prim [ i 2 0

where the integral is taken over (124). By lemma 36 this is
< P¥ 4 (R...Rp)*.

Summing over B, B, R and using (117) we obtain the result.

Lemma 39. For (a,a") in My(B, B', R) we have

T(y;) = R 'S(C, R) L(f) 4 O (Ri*) (130)
fori=1, ..., 10, where G_aBIhE o Ry—1, (131)
) R
and where S(a, q) = i e(ax3/q), ; (132)
x=1
k’'P 1 (kiP)3
LE) = [ epeydg = [ n-te(pn) . (133)
KiP (kiP)

Proof. This result (which is actually valid in I(B, B’, R) and independently of whether
R < P or not) is lemma 7 of Davenport (1939), with only trifling differences. The defini-
tion of I(f) used there had a finite sum in place of the last integral in (133), but the
difference between the sum and the integral is O(1).

LemMa 40. The contribution of all My(B, B, R) with R < P% to the integral in (62) is

Rszpf’6 BEB’ ffgn (B,B', R) T*(8,) Ulyy) --- Ulyis) dfdB’4- O (P%), (134)
where T*(8,f) = TIR7'S(C R L(B). (135)

Proof. By lemma 4 of Davenport (1939),
|R71S(Cy, Ry) ()| < R ¥min (P, P2 |3]). (136)

[The combination of this with (130) was in fact the underlying justification for the result
(112) of lemma 33.] The expression on the right of (136) is always greater than the error

17-2
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132 H. DAVENPORT AND D. J. LEWIS

term O(R¥*¢) in (130), since R, < R < P% and P-2|f|-1> P'"7 by (129). Hence the
result of multiplying together the ten approximations (130) can be written in the form

ﬁﬂ(%) — T#(f,§")| < R¥*II"{R+ min (P, P-2| 5]},

where 1’ means that one of 7 = 1, ..., 10 is omitted. By (128) integration with respect to
B, ' (even over the whole plane) gives

< R¥PSTI'R; < PSR+,

It suffices to multiply this by the trivial estimate P¥ for |U(y,;)...U(y5)| and sum over

B, B’, R. This gives an amount
< PP¥ 3 Y Rite

R<P% B, B

< PAE+336+e &£ P,
Hence lemma 40 is established.

Lemma 41. The contribution of all My(B, B’, R) with R < P% (o the integral in (62) is

P¥G(PY%) I(P)+ O(PY), (137)
where S(PP) = ;95 B%‘ij{RFIS<Q>Ri)}’ (138)
18)=[[ BB Bl 44 (139)

Proof. By lemma 8 of Davenport (1939) we have (the obvious analogue of (130)):
Uly) = R7'S(C, R;) J(B) + O(Rf*),

12

1 8P %
where J(p) = 3) n~%e(fp) dy,

corresponding to Z(f) in (133). For |f| < P=3*" we have

1 o™ :
() =3 | 1 dn+0(4 PY)

= Pt O(P¥),

Hence U(y) = PERIS(C, Ry) 4 O(PH+).
18 18
It follows that 11 U(y;) = P¥ TI R 'S(C, R) + O(P%+).
i=11 =11

Substituting this in the integral (134) we obtain the main term in (137), together with an
error term. The latter is < z z P2A-3+7) P10 P%L{.T’

R<P® BB

since | T%*| < P'° and the area of M, (B, B, R) is < PA=3+7, This expression is
< PA+37+270

Hence the result, on taking 7 and 0 sufficiently small.
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LEMMA 42. We have
I(P)~CP* (140)

as P — oo, where C is a positive constant.

Proof. Let I,(P) denote the integral (139) extended over the whole (4,£") plane instead
of over M, (B, B’,R). Then

[1(P) ~1,(P)| < [ [ TTmin (PP (4] ) dpdp

extended over max (|f],|#’|) > P~3*". By lemma 36 we obtain

|I(P)—I,(P)| < P+

We have L) = [ " KB - Lolbro) dp P

In the second form for L(£;) in (133), we put 5 = P3(, and we also put f = P~%w, /' = P~%'.
Then o o
1,(P) = 370po-s [© [ ([ () B elLo+ Lof) dt) dudo,
—00 o —co &

where & is the box defined by
K<l<k® (1=1,...,10)
and where L=L&)=a/+...+2,80
L'=L%) =b{+...+b,0,.

The equations L({) = L'(§) = 0 define an 8-dimensional linear space, which passes
through the point (yy, ..., %) of (85), which is in the interior of & by (56). Applying
Fourier’s integral formula twice to the last integral, in the form

A
lim V(¢) e(tw) do = V(0),
A—>0 J —Q

we obtain I,(P) = CP4,

where C is a constant given by an 8-dimensional integral, the integrand being positive
and the integration being over a positive 8-dimensional volume. This proves (140).

10. COMPLETION OF THE PROOF OF THEOREM 2

We have already seen in § 6 that it is legitimate to suppose that no ratio occurs more
than six times among the 4;/h;. The work of §§ 7 and 8, which was based on this supposition,
led to lemma 32 which asserts that the contribution of the minor arcs to the integral in
(62) is < P¥*99. In lemmas 37, 38, 41 of §9 it was proved that the contribution of the
major arcs is given by (137). Hence, by (140),

N(P) = PGS (P¥) {C40(1)}40(P%).
The series (138) for S(P%), when continued to infinity, is absolutely convergent by the
estimate (117). Hence N (P) = CP% G+ 0(P%), (141)
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134 H. DAVENPORT AND D. J. LEWIS
where & is the ‘singular series’ defined by
S = }Zl BZB, (B ... Rig) P S(CLRy) ... S(Crg, Ryp). (142)
. C, aB+b B
Since R~ R
we have RS(C,R) = R™\S(a;B-+b, B, R).

Hence the definition of G in (142) can be written in the alternative form
S=3 3 RUS(q,B+b B, R)...S(aB+byBR).
R=1B,B

By standard methods, the series can also be expressed as

ITX/»
b»

where Xp=1+2 2 ()7 18(a; B+, B, p7)...S(ag B+byy B, p).

We easily deduce from (117) that for large p
[xp—1] <p=3*e.

Hence there exists p, such that 1T x, =%
b>po
For a particular p < p,, it follows from standard arguments that y, > 0 provided the

equations
q F: alx:l)’—'l—‘...—"‘algx?g:o,

G = b1x¥+...+b18x%g — O
have a non-singular solution in the p-adic field. This is true by the Corollary to Theorem 1

provided that there is no form AF+-uG (with A, #4-0,0) which contains explicitly only six
or fewer variables. Subject to this condition, we have y, > 0 for each p < p,, whence

S >0.

The condition is amply satisfied, for as remarked at the beginning of this section, no 7
of the ratios «,/b; are equal, and therefore each form of the pencil contains at least 12
variables explicitly. Now (141) shows that

N (P) =00 as P - o0,

and the solubility of /' = G = 0 in rational integers follows.
This completes the proof of theorem 2.

11. APPENDIX ON THEOREMS 1A, 2A.

Proof of theorem 1A. Theorem 1A is contained in theorem 2 of Lewis (1957). However,
the proof given there related to the more general case in which the rational field is replaced
by an algebraic number field, and then there is the complication that the prime 3 may
ramify in the field. Hence it may be worth while to outline a simple proof of theorem 1 A

itself.
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CUBIC EQUATIONS OF ADDITIVE TYPE 135
As shown in lemma 3 of Davenport & Lewis (1963), with £ = 3, a diagonal cubic form
is equivalent to a form F — Fy 4 pF, + $°F,,

where F, is a diagonal form in m; variables with all coefficients prime to p, and where the
variables in F, F;, F, form three disjoint sets. Moreover

my = in, my+m; = 3n,
so that when n > 17, my>=3, my+m =5,

By the analogue of the argument of § 5 of the present paper (which is now very simple)
it suffices to solve F=0 (modp) if p=3,
or ‘ F=0 (mod9) if p==3,
with some g;x; == 0 (mod 3) in both cases, that is, with some &, which occurs explicitly in
F, different from 0.

For p = 3, a solution satisfying the conditions exists by lemma 4 of §3 of the present
paper. '

For p = 3, we group the variables occurring in /7 into [4m,] disjoint pairs, with possibly
one left over which we equate to zero. For each pair #, x; the congruence

a;x}+a;x} =0 (mod3)

has a solution with % ;% 0 (mod 3), namely x, =1, #; = +1. We take such a solution
for each of the disjoint pairs and multiply the first solution throughout by 7;, the second

by 75, and so on.

If m, > 4, then [im,] > 2, and

F=38( T34+, T3+...4¢;y}) (mod9),
and if m, = 3 then [im,] = 1 and
F=3(a; T}+...+¢;y}) (mod?9),

where y; typifies the variables (if any) in F,. In the former case there is a solution of F = 0
(mod 9) with either 7} or T, == 0 (mod 3), without using the variables y;. In the second case
we have m; > 1 (actually m; > 2) and there is a solution with 77 = 1 and a suitable y,. In

cither case we get a solution with some variable which occurs explicitly in F, different
from 0.

As regards the last clause of theorem 1A, one may consider any equation of the form
= N+ p(x} — No) +4°(s3— Nod) — o,
where p is a prime =1 (mod 3) and N is a cubic non-residue modulo p. This has only
the trivial solution in the p-adic field.
Proof of theorem 2A. As has been remarked before (e.g. in Davenport & Lewis 1963) the

proof requires only a natural adaptation of the method of Davenport (1939). We consider

the number of solutions of 4y x4 agxd = 0, (143)

subject to kP <x,<k;P (1=1,...,4)

b

Pt < x, < 2Pt (i=5,...,8).
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136 H. DAVENPORT AND D. J. LEWIS

It is necessary first to- have a solution of
a1+ tax, =0

with all the y, > 0, which can be postulated without loss of generality, and to choose the

k; and «; so that K < b < Kl
i <X i

'The number of solutions can be expressed (in the notation of the present paper) as
1
H(P) = foTl(aloc) o Ty(a,0) Ulaga) ... Ulaye) da.

The major and minor arcs are defined as in Davenport (1939), and the contribution of
the minor arcs to the integral is < P*+36+3% by lemma 15 of that paper. The contribution
of the major arcs is investigated on the usual lines, starting from the approximations to
T'(a) and U(x) given by lemmas 7 and 8 of Davenport (1939), and yields an amount

CPHG+o(P?),

where C is a positive constant and & is the ‘singular series’

=3 3 ¢ SuugSun

g=1 (a,q)=1

The singular scries is absolutely convergent, since

q~8 ISala,q ce Saga,q' < q_%a

and @ is positive provided the equation (143) has a non-singular solution in the p-adic
field for each prime p. Since we can suppose all ¢; % 0, a non-singular solution is the same
as a solution with not all the x; zero. The existence of such a solution is ensured by
theorem 1 A.
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